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Received 23 August 1994

Abstract. A method is investigated for inducing highest-weight representations for the quantum
group Ug(gl(n)) from the cancnical subalgebra Uy(gl(n — 1)) when g is a roct of unity. We
classify the irreps into two types, typical and atypical, where the former is a generalization of
the class of irreps with maximal dimensionality. The structures of both the typical and atypicat
irreps are studied; in particular, a sufficiency condition is given for an irrep to be typical. As
examples, we consider flat representations induced from a one-dimensional representation of the
canonical subalgebra and representations induced from vector representation.

Quantum groups [1, 2] are a special class of Hopf algebras which have attracted considerable
attention because of their application in a variety of areas of mathematical physics. At
generic values of the deformation parameter g, quantum groups are quasitriangular Hopf
algebras [1], admitting a universal R-matrix which plays an important role in solving the
Yang-Baxter equation.

When g is a root of unity, the structure and representation theory of quantum
groups alters dramatically due to the centre becoming augmented by additional elements.
Considerable research has been undertaken to study these algebras and their representations
using various techniques including Gelfand-Tsetlin bases, auxiliary algebras and g-boson
calculus [3-8]. Although these algebras are not quasitriangular in the usual sense, they
possess a more general property called autoquasitriangularity as defined by Reshetikhin [9].
Aside from their mathematical interest, quantum groups at roots of unity have applications
in a range of areas. It is well known that the chiral Potts model and its generalizations
[10,11] are based on representations of U,((r)} when ¢ is a root of unity. Other examples
include field theories {12} and the construction of three manifold invariants [13, 14].

In this letter, we wish to investigate a method of inducing highest-weight representations
of the quantum group U, (gl(n)), when g" = 1, from a representation of the canonical
subalgebra U, (gl(n—1)). These representations do not necessarily admit a lowest weight and
their dimensions are bounded by Ni"*=1), features which are not shared by representations
at generic g. Our approach is inspired by the work of Kac [15] on the induced module
construction for finite-dimensional highest-weight representations of basic classical Lie
superalgebras and its generalizations [16,17]. It is also closely related to the Biedenharn—
Lohe construction [18) of U,{gl(n)) irreps at generic ¢ based on the Borel-Weil theory.
Many techniques developed in [18] may be adopted into our framework to investigate the
representations at roots of unity in a detailed fashion.
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Although our construction does not yield the most general type of representations at
roots of unity, it is quite simple to apply and, in principle, aliows one to investigate the
highest-weight representations systematically. The construction also naturally classifies the
irreps into two types, typical and atypical, where the former is a significant generalization
of the class of irreps with maximal dii‘ncnsionality studied by De Concini and Kac [3]. We
will study the structures of both types of immeps to some extent; in particular, we give a
sufficient condition for an irrep to be typical. As we will see, the structures of the typical
irreps can be understood relatively easily, while those of the atypicals are harder to study.
As examples, flat representations and those induced from the vector irrep of U, (gl(n)) are
considered in detail, .

The quantum group U, (gl{n)) is a unital algebra generated by the elements E2_,,
g,axl =1.2,...,n where 0 # g € C is an indeterminate, subject to the following
constraints:

g*E

b e _
E, gFigE =1

EY LEF
‘g

gyt =g

Efph _—E° 5t 58
g5 Epy g = g%t ED

E]

(Egu B = sg("(:—_':__%”
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gt = gEi-El
El Ep = B Elyy la—bl=2
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and where [, } denotes the usual commutator.

Up(gl{n)} admits a Hopf algebra structure, with co-product A : U,(gl(r)) —
U, (gl(n))@ U, (gl(n)), co-unit € : Uy(gl(n)) — C and antipode S : U, (gl(n}) — U, (gl(n}).
However, we omit the details of these mappings as they will not be required for the purpose
of this letter.

We can construct root vectors of U,(gl(n)) in the following way.

Ej = E(E} — ¢ EJE;

EY = EPES —gE‘E®  a<c<b. )
It can be verified that such vectors satisfy the following relations Ya < ¢ < b:

EjE! =qE}E;  EJEj=qE{E]

E(E; =qE,E;  E!E]=qEjE]

[ES, (E2)P] = gl—plEE(ELyP—1g5i-E
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Hereafter, we let ¢ € C be a fixed primitive root of unity such that ¢¥ = 1. It is
known [3] that in such a case the elements

(EBHN Yi<a, bgn a#b
are central. It is worth mentioning that when N is even, the elements

EDH
are central with respect to algebra U,((n)) [3]. However, we will restrict our attention
to U,(gl(n)) and, in what follows, we will be concerned with inducing highest-weight
representations of U, (gl(n)) from representations of the canonical subalgebra U, (gl(n—1)}.
Throughout, we will denote the eigenvalues of the above central elements by

XUEDY) = ctap oy € C.
Since we are considering highest-weight representations, we then necessarily have

tgp =0 Viga<b<gn

Next we will investigate a procedure for constructing highest-weight representations of

U, (gl(n)) induced from representations of U, (gl(n — 1)). Such a procedure may be used
inductively along the subalgebra chain

Up(gl(2)) € Uy (gl3)) C -+~ C Uylgl(n — 1)) C U, (el(m)).

Let Vo(A®D), A = 3771 A&, denote an irreducible U, (gl(n — 1)) module with basis
v and a highest-weight vector vo which satisfies

Efyy =0 Vi<a<bgn-1

¢Zw=q"v  Yigagn-~-1.
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We also let U, (gl(n)) denote the algebra generated by U,(gh(n — 1)) U{E"_,, ¢%]. We
construct the following elements of U, (gl(n))

L'(p) = (EDP(ED™ .. (E;_y)
where p = Z;;: Da€a. and construct the following basis vectors:
Fi(p) =T(p) ®v;.

The above vectors generate a I/;(gl(r)) module with action givén by

EST)(p) =T(p) ® Efv; + ¢* P L= P{—p,I0(p — &, + &) @ g5 Fhy;

EET;(p) = g7 P (p) ® ELv; + gPTleart P p, T (p + £0 — 85)

EIT;(p) = g~ T PTy(p + £4)

g5T;(p) =q P T(p) ®q"%v;

aBT(p) = g™ TR ALp)  Yiga<b<n~1 3)

where A = A, + Ang; and A, € C is arbitrary, We denote this module by V(A).
Observe that we may write

=

VA= T; 4

1l
=]

where

a=1I
n:{rj(p):zp,=fmodw}. (5)
=0

Each of the T; gives rise to a U,{(gl(n — 1)) module and g% acts as a leve) operator in the
sense that

qE;T; — qArHT}-

In order to make V{A) a U,(gl(n)) module, we need to define the action of E"™1 Letus
define

EFtIeVvArT) =0
which can be shown to imply

EXI@ VA" =0 Yi<ag<n-1.
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Using (2) and (3), we can then write

| qE,','I{—AnH—pn-l — qnn-z::}srpn_;—l
E;TTip) =[prall(p — €0-1) @ pmpre v

=2

+ 2 gt ]

a=!
x [4Z PT(p = £,) @ B3 g B vy + [—pp i IN(p = 801) @ g5
(6)

thus providing a representation of U,(gl(n)) which possesses a highest-weight vector I @ v,
{not necessarily unique). It should be apparent that highest weights satisfying

=V, + kN k, e Z Yigasn
give rise to equivalent modules V(A) and V(v).

Note also that V(A) is not necessarily an irreducible module. Let M denote the unique
maximal proper submodule of V(A). We set

V(A) = V(A)/M.

Then V(A) is irreducible. If M 5 0, we say that V(A) is atypical. On the other hand,
if V(A) is irreducible, we set V(A) = V(A) and we refer to it as being fypical. As we
will see presently, the structures of the typical irreps can be understood rather easily, while
those of the atypicals are harder to study.

Let us consider the case when

Opa = 0 Yiga<n {7
and derive necessary and sufficient conditions for V(A) to be typical. It is instructive to
point out that when Vo(A®~1) possesses a lowest-weight state then the induced module

V(A) also admits a lowest-weight state under condition (7).
We begin by defining (cf (4) and (5)}

n—1
{n=r;(p):2pz=f] ®
=1

and observing that

&)

]
1D~
oy

where each of the 7; constitutes a U,(gl(n — 1)) module and X = (n — 1}(N — 1). That is
to say, we can further split the U,(gl(rn — 1)) levels of equation (4) under condition (7). In
particular, we can identify a lowest level, namely Ty. We have the following result.

Lemma I.  Any submodule of V(A) contains the U,(gl(n — 1)) module T.
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Proof. Given any vector contained in a submodule of V(A), we can obtain a vector in Ty
by repeated application of the generators E}, 1 < a < n. We note that

FTIN-D={F(p):p.=N-1 ¥Ylga<n}
commutes with the U, (gl(n — 1)) generators. Hence, we can generate the whole of Tx. O
Equipped with lemma 1, we define
Yo = (BNl (BN HEDNT - BV @ v

It is apparent that module V (A) is irreducible if, and only if, ¥, # 0. By repeated application
of equaticns (2), we have

N=2 a_En. n_po
Yo = (EFY ' (EEYN N - 1 ] (‘J"’« B g Eﬂ#)
" ’ r=0 q —4‘1

s (ER W1 BV T @

N=2 / Ae—dp=rdn—a=1 _ dp—Aetr—ntatl
=[N-1]!I“[(" c )Ya+1

r=0 q9- q—]
N1 (1+P»£¢_€n}_r — —(}.+p,£,-£,.)+r
q q
=w-m [T ( p— JE
r=

where p = 1377 (n + 1 — 2a)g, is the half sum of positive roots of gl(n). The above
result leads to the following proposition (cf [3]).

Proposition 1. The module V(A) 1s typical (i.e. V(A) is irreducible) if, and only if,
(A+p,80—e) g Z/NZ Yiga<n

In view of proposition 1, it is apparent that for generic values of parameter A,, the
induced module construction yields a one-parameter family of typical modules. It is
straightforward to show that a typical module V(A)} induced from the U, (gl(n — 1)) module
Vo(A®=1) has

dim V(A) = N*D dim Vg(A®—1)

and also a vanishing g-dimension [19]. Also, the typical irreps are a significant extension of
the class of irreps with maximal dimensionality studied in [3]. Proceeding down the chain
of subalgebras, it is clear that a module V{A) will be of maximal dimension if, and only if,

(A+p, 6 —¢)¢Z/NL i, j

which is exactly the criterion given in [3]. It is also worthwhile to point out that if V(A)
is typical under condition (7), then it is also typical for general values of ¢y, although the
converse is not true.

To demonstrate how our construction works, we apply it to obtain the irreducible
representations of U, (gl(z)) induced from the trivial and vector representations of Uz (gi(n—
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1)). The irreducible representations induced from the trivial U,(gl(z — 1)) module are
termed flar (i.e. the weight spectrum is multiplicity free) and have been considered in [5]
using Gelfand-Tsetlin basis states. Here we will reconsider these representations using cur
alternative approach, which, as we will see, is very simple.

Let vp provide a one-dimensional module of U, (gl(z— 1)) with the usual (trivial) action.
We construct the Uy (gl{n)} module V(Aps,) with basis vectors

Co(p) ® vo.

From equations (3) and (6), the action of the U,(gl(n)) generators is given by
EgTo(p) = g7~ Ties M1—pITo(p — & + )
EiTo(p) = q”"'ﬂ"“ P pallo(p + £a — 5)
EXTo(p) = g~ 541 PTo(p + &)
¢%To(p) = ¢ " To(p)

. -1
g5 To(p) = g™ Zi= PTy(p)

n~2

Ex'To(p) = [ [1— prot — AnllPpi] +ZGA“_1+p“+p""[Pa]{—Pn-ll}f'u(P ~ £a1)

a=1

Vi<a<b<n. §1)]

The explicit action of the generators E9, 1 < a < n, is obtained from (1) and (10).

We now consider the conditions under which V(A) is irreducible. First, if any of the
®ng, 1 € @ < 1 are non-zero then V{A) is necessarily irreducible. To see this, given any
vector I'g(p), application of generators EZ, b # a an appropriate number of times yields

(E) ®@ vy

for some . oy, # 0 immediately implies that V' (A) is typical. On the other hand, if o,, = 0
¥1 £ a < n, then proposition 1 implies that V(A,.¢,) is irreducible if, and only if, A, ¢ Z.
‘We remark that for A, € Z in the range 0 2 A, > N, the irreducible module V{A,z,) is
simply the dual of the rank —A, symmetric representation which has dimension

(n—1-A)!
(n— DU=AD
This leads to the following classification.
Proposition. 2. All of the irreducible modules V(Anen) of U,(gl(r)) have dimension

(n — D™D unless oy = 0, V1 € @ < 2 and A, € Z. In such a case, V(A,¢,) has
dimension

(n—1+N— A
(n — DN — A)!

where A, € R is chosen in the range 0 < A, < N.
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Next we construct representations induced from the vector module of U,(gl(n — 1))
with basis {v,} . We change our convention here for ease of notation and let vy denote
the h1ghest-we1ght state. The action of the U,(gl(n — 1)) generators on this module is
particularly simple, viz

Bl =byu.  Va ;e b

g%v; =q%y  Yigagn-L
Equations (3) and (6) then take the form
EZTi(p) =8y, Talp) -+ ¢**P "L S p, )T (p — 5 + £1)
EET(p) = 84jqP*"PTy(p) + gP*~Timett P p,IT;(p + £, — &)
EITy(p) = g~ S5 ATy(p + &4)
g% T;(p) = g P T;(p)
g5 T(p) = g™t T ATy (p)

n=21

E:—IPJ(P) = [Pn:—l][l — Pne1 — Ap— aj(n—l)]‘rf(p —&p-1) F quulfp'-l-p“—lipa]

a=1
-2
x [aﬂjqu""" Pl ip—e)+g~ ’(”-”{—Pn—l]rj(ﬁ’ ! En—l)] .

Under condition (7), we deduce from proposition 1 that the above induced module
with highest weight & + Ape, is irreducible provided A, ¢ Z. Hence, for generic values
of A,, the above construction yields a one-parameter family of irreducible modules with
dimension (n — 1)N®=Y, For general values of ap,, V(A) is also typical provided A, ¢ Z.
The treatment of the atypical modules, which we will not consider here, is comparatively
more complicated.

In conclusion, in this letter, we have developed a method of constructing finite-
dimensional highest- welght representatmns of U,(gi(n)) when g% = 1. These
representations do not, in general, admit a lowest—wmght vector and, therefore, are not
simply a deformation of the g = 1 case. Indeed, there are no lexicality conditions imposed
on the highest weight unlike the g =1 case and, as is known [3], the dimensions of the
irreps are bounded. We have classified the irreps into two types, typical and atypical. The
former represents a significant extension of the irreps with maximal dimensionality studied
in [3]. Also, the structures of the typical irreps are rather well understood.

As examples, we constructed flat representations of U,(gl(#)) induced from a trivial
representation of U, (gl(n — 1)) and representations induced from the vector representation.
Finally, we would like to mention that a similar method has been applied to construct
highest-weight representations of the quantum supergroup L7, (gl{m|n)) [171.
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